Ramanujan-type congruences modulo m for (l, m)-regular bipartitions

نویسندگان

چکیده

Let $$B_{l,m}(n)$$ denote the number of (l, m)-regular bipartitions n. Recently, many authors proved several infinite families congruences modulo 3, 5 and 11 for . In this paper, we use theta function identities to prove m bipartitions, where $$m\in \{7,3,11,13,17\}$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan Type Congruences for a Partition Function

We investigate the arithmetic properties of a certain function b(n) given by ∞ ∑ n=0 b(n)qn = (q; q)−2 ∞ (q 2; q2)−2 ∞ . One of our main results is b(9n + 7) ≡ 0 (mod 9).

متن کامل

ABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$

‎The ABS methods‎, ‎introduced by Abaffy‎, ‎Broyden and Spedicato‎, ‎are‎‎direct iteration methods for solving a linear system where the‎‎$i$-th iteration satisfies the first $i$ equations‎, ‎therefore a‎ ‎system of $m$ equations is solved in at most $m$ steps‎. ‎In this‎‎paper‎, ‎we introduce a class of ABS-type methods for solving a full row‎‎rank linear equations‎, ‎w...

متن کامل

Permutation Polynomials modulo m

This paper mainly studies problems about so called “permutation polynomials modulo m”, polynomials with integer coefficients that can induce bijections over Zm = {0, · · · , m−1}. The necessary and sufficient conditions of permutation polynomials are given, and the number of all permutation polynomials of given degree and the number induced bijections are estimated. A method is proposed to dete...

متن کامل

Null Polynomials modulo m

This paper studies so-called “null polynomials modulo m”, i.e., polynomials with integer coefficients that satisfy f(x) ≡ 0 (mod m) for any integer x. The study on null polynomials is helpful to reduce congruences of higher degrees modulo m and to enumerate equivalent polynomial functions modulo m, i.e., functions over Zm = {0, · · · , m − 1} generated by integer polynomials. The most well-know...

متن کامل

Ramanujan type identities and congruences for partition pairs

Using elementary methods, we establish several new Ramanujan type identities and congruences for certain pairs of partition functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Pure and Applied Mathematics

سال: 2021

ISSN: ['0019-5588', '0975-7465', '2455-0000']

DOI: https://doi.org/10.1007/s13226-021-00015-w